Design and Implementation of a GSM Activated Automobile Demobilizer with Identification Capability

M. S. Okundamiya 1,a, J. O. Emagbetere 2,b, F. O. Edeko 2,c

1Department of Electrical/Electronic Engineering, Ambrose Alli University, Ekpoma, Nigeria
2Department of Electrical/Electronic Engineering, University of Benin, Benin City, Nigeria

Keywords: GSM activated car demobilizer, Car Security system, electronic counters, timers and GSM service area

Abstract. The incidence of car theft in Nigeria has grown to nearly epidemic proportion. On daily basis, the numbers of stolen cars reported over the media are on the increase. Alarms and other deterrents are not enough. There is actually little one can do to prevent a car from being stolen. However, with a Global System for Mobile communication (GSM) activated automobile demobilizer with identification capability one can virtually take control of the virtually impossible incidence and hence increase the possibility of car recovery. This paper is aimed at implementing a security device capable of safeguarding cars from theft as well as provides picture and audio information of the culprits in an attempt to steal the car. To realize this work, use was made of a GSM phone

Introduction
CARS security in Nigeria has deteriorated over the past years, with high crimes rate of occurrence between November and January yearly. There is little we can do to prevent a car from being stolen. However, with enhanced security systems, the situation can be control. Hence in this paper we present a GSM activated automobile demobilizer with identification capability. The device is capable of providing and storing the audio and picture images of the culprits (intruders) for identification and possible prosecution evolved, thus reducing car theft [1]. The device can be controlled with a GSM handset, and can conveniently deactivate the car. This equipment is hidden within the vehicle.

Literature Review
The GSM car security system allows authorized users to gain control over the safety of their car. It is a hybrid system which combines different features to realize car security. This high-technology vehicle security and monitoring system is a state-of-the-art device which gives car owners complete control of their cars. Some GSM security systems combines the GSM mobile communication, MGPS locating technology and MICROCHIP rolling code technology, multi-code mating and microcomputer technology [2]. Some combines GSM and GPS technology to track and demobilize the owners car from anywhere in the world [3], GSM car alarm and demobilizer [4]. However, in this paper we present a security system which combines GSM technology to track and demobilize the owner’s car within the GSM service areas, as well as identification capability.

Prior to the development of digital electronics, car engine demobilizers use analogue timers which work until the preset time is reached. With the advent of digital electronics, electronic counters like NE555 timers, JK-Flip flop, binary and decade counters [5] are now in use. The use of these electronic components with low noise, and relatively small size compared to the analogue timers, made it difficult to be detected in the car system.

In this work, we used a GSM handset as a control unit to deactivate the security device as well as provide and stores the picture image and audio information of the culprits in case the car was stolen at gun point.
Methodology/Design Consideration
The design and implementation of the GSM activated automobile demobilizer with identification capability is achieved with both discrete components and integrated circuits (ICs). The entire circuitry is designed around a Sony Ericsson K600i Camera Phone that is MMS compatible. It consists of three parts: Power Supply Unit, Signal Processing Unit, and the Latch Shutdown Circuitry.

Design Analysis
The design analysis was carried out in stages [6 - 11].

Fig. 1 shows the charging circuit

\[R_{charge} = R_1 = \frac{V_1 - V_F}{I_{charge}} \] \hspace{1cm} (1)

and

\[I_{charge} = 0.1I_{max} \] \hspace{1cm} (2)

\[I_{max} \] is the maximum current capacity of rechargeable battery, \(V_F \) is the forward voltage drop of diode \(D_1 \) and \(V_1 \) is the voltage of car battery.

The power dissipated, \(P_{charge} \) by the choke resistor is

\[P_{charge} = I^2R_{charge} \] \hspace{1cm} (3)

Fig. 2: Schematics a constant 3.9 volts supply using LM317T

The parameters can be calculated as; [13]

\[R_2 = R_1 \left(\frac{V_{out}}{V_{ref}} - 1 \right) \] \hspace{1cm} (4)
V_{\text{ref}} is 1.25 volts while standard values of R_1 range from 220 Ω - 240 Ω. V_{out} is designed to be 3.9 volts.

The oscillatory frequency, f_{osc} of CMOS Relaxation RC Oscillator Circuit is expressed as

\[f_{\text{osc}} = \frac{1}{R_4 C_2} \]

(5)

The timing resistor R_4 and capacitor C_2 were chosen.

The induced voltage across the inductor of the forward DC-DC converter is given as [14,15]:

\[V_L = L I_L f \]

(6)

Where L is the inductance of coil, f is the oscillatory frequency and I_L is the induced current.

The cut-off frequency, f_c of the low-pass filter formed by C_3 and D_4 is given as [16]:

\[f_c = \frac{1}{2\pi R_f C_3} \]

(7)

Where R_f is the specified forward resistance of D_4 (=400Ω)

The input current I_{B3} of the Darlington Transistor is expressed as [12]:

\[I_{B3} = \frac{I_{E4}}{(h_{fe4} + 1)(h_{fe3} + 1)} \]

(8)

KTC9014 current gain, h_{fe3} is 200 (given) and D882 current gain, h_{fe4} is 12 and I_{E4} is the required charging current, designed to be 500mA [12].

\[R_{E3} = \frac{V_Z - V_{BE3}}{I_{B3}} \]

(9)

The bit number, N of binary counters is given as [17]:

\[N = 2^n \]

(10)

Where n is the number of stage and it is specified to be 14 for CD4020. The input period of the interrupt charger is [17]:

\[T_{in} = \frac{T_{out}}{2^{14}} \]

(11)

T_{out} is chosen to be 3600 seconds.

For RC DC circuits, the timing constant is given as [12]:

\[T = RC \]

(12)

and

\[R_s = \frac{T_{in}}{C_5} \]

(13)

C_5 was chosen.
Fig. 3: Common Collector Fixed Base Bias Buffered with an Emitter Follower.

From Fig. 3, the emitter follower was biased such that

\[V_{E7} = \frac{1}{2} V_{CC} \] \hspace{1cm} (14)

\[R_{E7} = \frac{V_{E7}}{I_{E7}} = \frac{V_{CC}}{2I_{E7}} \] \hspace{1cm} (15)

\[I_{E7} = I_{C7} + I_{B7} \]

\[I_{E7} = I_{B7} \left(h_{fe7} + 1 \right) \] \hspace{1cm} (16)

\[I_{B7} = \frac{I_{E7}}{h_{fe7} + 1} \] \hspace{1cm} (17)

\[V_{CE6} = V_{E7} + V_{BE7} \]

\[V_{BB6} = V_{CE6} - V_{BE6} \] \hspace{1cm} (18)

\[R_{C6} = \frac{(V_{CC} - V_{CE6})}{I_{C6}} \] \hspace{1cm} (19)

\[I_{B6} = \frac{I_{C6}}{h_{fe6}} \] \hspace{1cm} (20)

\[R_{B6} = \frac{V_{BB6}}{I_{B6}} \] \hspace{1cm} (21)

\[C_6 = C_7 = 0.01\mu F \text{ (chosen)} \]

The gain, \(G \) of the amplifier in Fig. 4 is given by Ebers-Moll Equation as; [16]

\[G = \frac{R_L}{R_E} \] \hspace{1cm} (22)

Where \(R_L \) is the load resistance (=\(R_{C6} \)) and \(R_E \) is the total emitter resistance

\[R_E = R_e + r_e \] \hspace{1cm} (23)

Where \(R_e \) is the external resistance and \(r_e \) is the internal intrinsic resistance. Thus

\[G = \frac{R_L}{(R_E + r_e)} \] \hspace{1cm} (24)

Since emitter for \(T_6 \) is grounded, \(R_e = 0 \) thus Eq. 24 becomes
Fig. 4: Transistor Schmitt Trigger.

From Fig. 4, the design of the input (turn-on) voltage is such that

\[V_{in} > 0.6V \] \hspace{1cm} (28)

\[V_{ES} = \frac{1}{4} V_{CC} \] \hspace{1cm} (29)

\[V_{CES} = \frac{1}{2} V_{CC} \] \hspace{1cm} (30)

\[R_{CS} = \frac{V_{CS}}{I_{C8}} = \frac{(V_{CC} - V_{CES})}{I_{C8}} \] \hspace{1cm} (31)

\[I_{ES} \approx I_{C8} + I_{B8} \] \hspace{1cm} (32)

since \(I_c >> I_B \)

\[I_{ES} \approx I_{C8} \] \hspace{1cm} (32)

\[R_{ES} = \frac{V_{ES}}{I_{ES}} \] \hspace{1cm} (33)

Similarly for \(T_9 \)

\[R_{C9} = \frac{(V_{CC} - V_{CES})}{I_{C9}} \] \hspace{1cm} (33)

\[I_{E9} \approx I_{C9} \] \hspace{1cm} (34)

The output period of two cascaded decade counters is given as; [17]

\[T_{out} = 100T_{in} \] \hspace{1cm} (35)
Fig. 5: Latch Circuit used to drive a Transistor Relay Driver.

The trigger (ON) voltage is [5];

\[V_{\text{th}} = \frac{1}{3} V_{cc} \] \hspace{1cm} (36)

\[R_{24} = R_{25} = 10K\Omega \text{ (Chosen)} \]

\[R_{24} = 1K\Omega \text{ (Chosen)} \]

The relay effective resistance is given as [12];

\[R_{\text{eff}} = \frac{R_{rly} R_{rly}}{R_{rly} + R_{rly}} = \frac{R_{rly}}{2} \] \hspace{1cm} (37)

Using \(h \)-parameters \[14\]

\[I_B = \frac{I_C}{h_{fe}} \] \hspace{1cm} (38)

\[C_{10} = C_{11} = C_{12} = C_{13} = C_{14} = C_{15} = 0.01\mu F \text{ (Chosen)} \]

Operational Principles of the GSM Activated Automobile Demobilizer with Identification Capability

The power supply unit, which consists of the charging circuit, the conditioned voltage supply and the one hour interrupt GSM charger is designed to charge the GSM phone battery as well as the rechargeable (backup) battery. The GSM phone battery powers the demobilizer in case the car battery is disconnected. The diode OR-Gate is designed such that the car battery having a higher potential of 12 volts, supplies current to the LM317T voltage regulator which in turn supplies a constant 3.9 volts to the demobilizer system. The clock oscillation section is designed around the MM74HC14 Hex Inverting Schmitt Trigger and it runs from the 3.9 volts. The MM74HC14 Hex Inverting Schmitt Trigger sends clock signals to CD4020 and CD4017.

When the Sony Ericsson K600i camera phone positioned within the signal processing unit receives the audio signal (ring tone) from the caller’s phone through the earpiece, it is connected to the input of the common collector fixed base bias small signal amplifier with emitter follower. This amplifier amplifies the incoming signal and its output is sent to the transistor Schmitt Trigger, which converts
the sine wave (audio signal) into a square wave. The output of the square wave is used to clock the first decade counter; CD4017, with odd outputs connected to an LED via IN4001 signal diodes. The LED flashes as the sine wave signal flows through it. The outputs of this counter through IN4001 are used to trigger the master latch circuit. This is shown in Fig. 6. The master latch circuit designed around an NE555 timer and two KTC 9014 Transistors activates a transistor relay driver circuit. This relay when activated supplies +6 volts to the dialing network. The dialing network consists of cascaded Johnson Counters: CD4017 (2) and CD4017 (3), a Schmitt Trigger RC Oscillator, a transistor relay switch, two transistors relay circuits driven by monostable circuits and the Sony Ericsson K600i Camera Phone. The cascaded counter is fed by the Schmitt Trigger RC Oscillator, which generates 1.2 seconds clocked signal.

From the time the dialing network is activated, the cascaded counter initializes its counting sequence and after 24 seconds, output “1” of CD4017 (2) through IN4001 and a transistor relay switch activates the snap button on the GSM phone keypad while output “2” and output “3” via IN4001 signal diodes feed a transistor relay switch driven by a monostable circuit. This helps to process the picture information of the intruder and send same to the owner’s phone whose SIM number has previously been stored in the demobilizer’s contact. The owner’s phone must be MMS compatible and must be activated by the GSM service provider to enable access. Output “4” of CD4017 acts as a delay, while output “5” is used to activate another monostable circuit. This circuit drives a transistor relay switch which in turn is used to clear the screen of the K600i Camera Phone. Output “6” also acts as a delay while at 94 seconds, output “7” is used to dial the caller so that when he accepts the call, he will be able to listen to the audio conversation of the occupants in the car as well as what is going on in the surrounding environment in order to determine the location of the car and be equipped with vital information. Output “8” also acts as a delay while at 120 seconds, output “9” is used to enable CD4017 (3). Output “1” of this counter designed at 240 seconds from the initial counting sequence (start time) through IN4001 activates the shutdown latch circuit. This in turn forward biases transistor, \(T_{10} \) (KTC9014). With \(T_{10} \) ON, \(I_{c10} \) flows, thus reverse biasing \(T_{11} \). This turns OFF the relay connected to the ignition coil thereby switching OFF the car. This action is indicated by the switching OFF of the LED connected between the relay terminal and ground. At the same time the output signal from output “1” of CD4017 (3) is used to reset the master latch circuit thereby switching OFF power supply from the dialing network.

After the car has been demobilized, the caller still has access to the audio information within the car for as long as the demobilizer’s SIM is recharged. The entire circuit can be reset first by pressing the hidden reset button to reset the shutdown latch circuit and then switching OFF and then ON the power supply switch. This helps to deactivate the CD4017 (1). However when the power supply is switched ON, the CD4017 (1) can not be activated without the external 900MHz GSM signal. This is because the two 0.01\(\mu \)F capacitors \(C_6 \) and \(C_7 \) help to block the DC voltage between the GSM phone and the Transistor Schmitt Trigger thus keeping it OFF.
Results and Discussion

Apart from realizing the objective of this work, we tested for the performance of the system based on its parameter as against their theoretical and designed specifications as shown in Table 1. The measured system parameters obtained as compared to the designed parameters were satisfactory. The developed system performed satisfactorily.

Table 1: Test Results

<table>
<thead>
<tr>
<th>S/N</th>
<th>Parameters</th>
<th>Theoretical Values</th>
<th>Designed Values</th>
<th>Measured Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Charging Current, I_{charge}</td>
<td>450mA</td>
<td>380mA</td>
<td>350mA</td>
</tr>
<tr>
<td>2</td>
<td>Charging Voltage, V_{charge}</td>
<td>12V</td>
<td>11.6V</td>
<td>11.6V</td>
</tr>
<tr>
<td>3</td>
<td>Output Voltage to LM317T, V_{out}</td>
<td>Adjustable</td>
<td>3.9V</td>
<td>3.9V</td>
</tr>
<tr>
<td>4</td>
<td>Input Voltage to LM317T, V_{in}</td>
<td>12V</td>
<td>11.7V</td>
<td>11.7V</td>
</tr>
<tr>
<td>5</td>
<td>Output frequency from Schmitt Trigger Oscillator</td>
<td>0 – 16MHz</td>
<td>20KHz (adjustable)</td>
<td>20KHz (adjustable)</td>
</tr>
<tr>
<td>6</td>
<td>Minimum Current to charge phone</td>
<td>300mA</td>
<td>400mA</td>
<td>350mA</td>
</tr>
<tr>
<td>7</td>
<td>Maximum Current to charge phone</td>
<td>550mA</td>
<td>500mA</td>
<td>480mA</td>
</tr>
<tr>
<td>8</td>
<td>Minimum Voltage to charge phone</td>
<td>4.2V</td>
<td>5V</td>
<td>5V</td>
</tr>
<tr>
<td>9</td>
<td>Maximum Voltage to charge phone</td>
<td>6V</td>
<td>6V</td>
<td>6V</td>
</tr>
<tr>
<td>10</td>
<td>Forward biased V_{BE} of Audio Pre-Amp</td>
<td>0.6V – 0.7V</td>
<td>0.6V</td>
<td>0.65V</td>
</tr>
<tr>
<td>11</td>
<td>Base voltage of KTC9014</td>
<td>2.55V</td>
<td>1.95V</td>
<td>2.45V</td>
</tr>
</tbody>
</table>
Conclusion
In this paper, we have been able to design and implement a GSM activated automobile demobilizer with identification capability, which provides a mechanism that can conveniently secure automobile cars from theft, and in case of theft can transmit the audio signal and picture image of the occupants of the car to the owners phone and shutdown the car in four (4) minutes to enable the owner recover it. The owner can identify and if possible arrests the culprits through the stored information (photographs and audio conversations) in the GSM handset.

References
Fig. 6: Complete Circuit Diagram of GSM Activated Automobile Demobilizer with Identification Capability
Design and Implementation of a GSM Activated Automobile Demobilizer with Identification Capability

doi:10.4028/www.scientific.net/AMR.62-64.89